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Abstract
Exceptional points associated with non-Hermitian operators, i.e. operators
being non-Hermitian for real parameter values, are investigated. The specific
characteristics of the eigenfunctions at the exceptional point are worked out.
Within the domain of real parameters the exceptional points are the points
where eigenvalues switch from real to complex values. These and other results
are exemplified by a classical problem leading to exceptional points of a non-
Hermitian matrix.

PACS numbers: 03.65.Vf, 32.60.+i

1. Introduction

Exceptional points are branch point singularities of the spectrum and eigenfunctions, which
occur generically when a matrix, or for instance a Hamilton operator, is analytically continued
in a parameter on which it depends. The term ‘exceptional points’ has been introduced by Kato
[1]. When a physical problem is formulated by H0 + λH1 with λ being a strength parameter,
the spectrum and eigenfunctions, En(λ) and |ψn(λ)〉, are in general analytic functions of λ.
At certain points in the complex λ-plane two energy levels coalesce. Such coalescence is not
to be confused with a genuine degeneracy, since the eigenspace of the two coalescing levels
is not two but only one dimensional; in fact the corresponding eigenvectors also coalesce and
there is no two-dimensional subspace as is the case for a genuine degeneracy.

If both operators, H0 and H1, are real symmetric, these singularities—the exceptional
points (EP)—can occur only for complex parameter values λ. As a consequence, at an EP
the full problem H0 + λH1 is no longer Hermitian as such, but when dealing with matrices, it
is still complex symmetric. These cases have been studied in some detail [2, 3] and here we
quote the major results.

EPs are always found in the vicinity of a level repulsion. Suppose that two levels show
avoided level crossing when λ is varied along the real axis; then the analytic continuation into
the complex λ-plane yields a complex conjugate pair of EPs where the two coalescing levels
are analytically connected by a square root branch point [4]. The occurrence of EPs is not
restricted to repulsions of bound states, a recent paper deals with the repulsion of resonant
states [5]. Being singularities in the interaction strength EPs determine the convergence radius
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of approximation schemes in the theory of effective interactions [6]. Quantum mechanical
phase transitions are characterized by a multitude or accumulation points of EPs [7, 8].

There are a number of phenomena, where the physical effect of an EP has been at least
indirectly observed. Laser-induced ionization states of atoms [9] are a clear manifestation
of an EP even though in [9], it has not been analysed as such. A recent theoretical paper
[10] shows that, for a suitable choice of parameters associated with an EP, the only acoustic
modes in an absorptive medium are circular polarized waves with one specific orientation for
a given EP. Similarly in optics, experimental observations in absorptive media [11] reveal the
existence of handedness since the stable mode of light propagation is either a left or a right
circular polarized wave for appropriately chosen parameters. This has been interpreted in [12]
in terms of singular behaviour of the dielectric tensor. A particular resonant behaviour of atom
waves in crystals of light [13] has likewise been interpreted [14] by the same mathematical
mechanism. Models for Stark resonances in atomic physics have been analysed in terms of
EPs and their connection to diabolic points discussed [15]. While absorption is essential in all
cases, some situations clearly point to a chiral behaviour of an EP. In fact, the wavefunction at
the EP has been shown to have definitive chiral character [16] and this has been experimentally
confirmed recently [17].

In a previous experiment [18], EPs have been investigated in a flat microwave cavity.
Major findings have been the confirmation of a fourth-order branch point of the coalescing
wavefunctions and—depending on the path in the complex λ-plane—level avoidance
associated with width crossing or level crossing with width avoidance. These results are
the consequence of the topological structure of Riemann sheets at a branch point [4]. The
experiment thus showed that this topology is a physical reality.

In the following, we carry the analysis further in that we investigate the EPs of H0 + λH1

when H0 or H1 or both are no longer Hermitian. As a consequence, even for real values
of λ, the problem H0 + λH1 is no longer Hermitian. This lack of Hermiticity is different in
nature from that discussed above where dissipation—like, for instance, in the optical model
in nuclear physics [19]—makes H0 + λH1 non-Hermitian for complex λ. There is a great
variety of problems in the literature where either the perturbation or the full Hamiltonian
is non-Hermitian. Boson mapping [20], effective interactions [21] and the random phase
approximation (RPA) in many-body theory [22] yield non-Hermitian operators. More recently
a wider class of non-Hermitian Hamiltonians has been proposed to address specific symmetries
[23] or transitional points in specific delocalization models [24]. These suggestions have led
to a further thorough study [25] of non-Hermitian operators.

The present study is motivated by one of the simplest problems in physics, that is the
classical problem of two coupled damped oscillators. It gives rise to non-Hermitian matrices
in a natural way. The problem is stated in the following section. The ensuing general treatment
of section 3 yields new insights and special features regarding level repulsion. It is shown
that the change from a complex to a pure real spectrum of a (real) non-Hermitian matrix
under variation of the (real) parameter λ is due to the occurrence of a real EP. As expected,
the coalescence at the EP of two complex eigenvalues into one real eigenvalue (which then
bifurcates in two real eigenvalues) yields only one eigenfunction in contrast to the usual two
for a genuine degeneracy. A typical example is the instability point of the RPA. In addition,
the pattern of level repulsion is distinctly different from that of Hermitian H0 and H1: the
levels approach each other in the form of a cusp and not in a smooth way as is the case for
Hermitian H0 and H1. These general findings are illustrated in section 4 where the example
of section two is resumed.

We stress that the present paper focuses upon EPs and not on the study of non-Hermitian
operators as such. A summary and suggestion is given in the last section.
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2. Two coupled damped oscillators

As a first illustration, we consider a simple classical case of two damped coupled oscillators in
one dimension. Denoting by p1, p2, q1, q2 the momenta and spatial coordinates of two point
particles of equal mass the equations of motion read for the driven system

d

dt




p1

p2

q1

q2


 = M




p1

p2

q1

q2


 +




c1

c2

0
0


 exp(iωt) (1)

with

M =




−2g − 2k1 2g −f − ω2
1 f

2g −2g − 2k2 f −f − ω2
2

1 0 0 0

0 1 0 0


 (2)

where ωj − ikj , j = 1, 2 are essentially the damped frequencies without coupling and f and
g are the coupling spring constant and damping of the coupling, respectively. The driving
force is assumed to be oscillatory with one single frequency and acting on each particle with
amplitude cj . Here we are interested only in the stationary solution being the solution of the
inhomogeneous equation which reads


p1

p2

q1

q2


 = (iω − M)−1




c1

c2

0
0


 exp(iωt). (3)

Resonances occur for the real values ω of the complex solutions of the secular equation

det|iω − M| = 0 (4)

and EPs occur for the complex values ω where
d

dω
det|iω − M| = 0 (5)

is fulfilled simultaneously together with equation (4). We choose the parameter f as the
second variable needed to enforce the simultaneous solution of equations (4) and (5) and keep
the other parameters of M fixed, but of course any other preference—like choosing g—would
be just as good and not alter the essential results. Thus we encounter the problem of finding
the EPs of the matrix problem

M0 + fM1 (6)

with

M0 =




−2g − 2k1 2g −ω2
1 0

2g −2g − 2k2 0 −ω2
2

1 0 0 0

0 1 0 0


 (7)

and

M1 =




0 0 −1 1

0 0 1 −1

0 0 0 0

0 0 0 0


 . (8)
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Figure 1. Real spectrum in arbitrary units as a function of λ. In terms of equation (9) the parameters
are ε1 = −1, ε2 = 1, ω1 = −0.2, ω2 = −0.6, φ1 = −20, φ2 = 450. The spectrum is complex
between the EPs at λ+

EP = 7.3 . . . and λ−
EP = 3.4 . . . .

Note that M0 and M1 are not symmetric. Before we turn to explicit solutions and
characteriztics of equations (4) and (5) we first address the general problem of EPs of non-
Hermitian matrices.

3. General non-Hermitian case

Like for the Hermitian operators the behaviour around an EP can be described locally by a
2×2 matrix. The reduction of an N-dimensional to a two-dimensional problem is given below.
We always consider a situation where the unperturbed problem, denoted by H0 or h0 for the
two-dimensional case, is assumed to be diagonal. At first we discuss the two-dimensional
case and assume that the Jordan decomposition of the non-Hermitian perturbation h1, i.e.
h1 = SJS−1, yields a diagonal matrix J . We thus consider

h(λ) =
(

ε1 0

0 ε2

)
+ λS

(
ω1 0

0 ω2

)
S−1 (9)

with

S =
(

cos φ1 −sin φ2

sin φ1 cos φ2

)
. (10)

Note that for h1 to be symmetric we would have φ1 = φ2, i.e. S would be orthogonal. For
convenience, we have exploited the freedom to use normalized column vectors in S. The two
eigenvalues of h are given by

E1,2(λ) = 1
2 (ε1 + ε2 + λ(ω1 + ω2) ± D) (11)

with the discriminant

D = ((ε1 − ε2)
2 + λ2(ω1 − ω2)

2

+ 2λ(ε1 − ε2)(ω1 − ω2) cos(φ1 + φ2) sec(φ1 − φ2))
1/2. (12)

The two levels coalesce when D = 0 that is for

λ±
EP = − ε1 − ε2

ω1 − ω2

(
cos(φ1 + φ2) ± i

√
sin 2φ1 sin 2φ2

)
sec(φ1 − φ2). (13)

Note that even when all parameters are real the two EPs can now occur on the real axis.
It happens when the signs of φ1 and φ2 are different. The implication is that the spectrum is
no longer real when λ lies between λ−

EP and λ+
EP. In figure 1 we display a typical case of a
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spectrum of that nature1. We recall that at the EPs, where the real spectrum ends or begins,
only one eigenfunction exists of the two by two matrix problem; its precise form is given
below. Here we stress a general property of a matrix at an EP: the Jordan decomposition of
h(λEP) = T JT −1 yields a non-diagonal matrix J given by the standard form

JEP =
(

E(λEP) 1

0 E(λEP)

)
(14)

whereas for all points λ �= λEP the matrix Jλ is diagonal and reads

Jλ = T −1h(λ)T

=
(

E1(λ) 0

0 E2(λ)

)
. (15)

We recall that T is orthogonal (or unitary) only if h(λ) is Hermitian.
While it is well known that a non-Hermitian operator can have a non-real spectrum, the

deviation from the Hermitian case has, for the real part of the spectrum, distinct consequences
for the shape of level repulsions; this is exemplified in the following section where typical
results of the two oscillators introduced in the previous section are presented.

Yet the local behaviour at the EP is basically the same as for the Hermitian case. It is
clear from equations (11) and (12) that the two eigenvalues are connected at the square root
branch points situated at λ = λ±

EP just as in the Hermitian case. The difference arises in the
eigenfunction at the EP. Recall that the coalescence of two eigenvalues at the EP is not to be
confused with a true degeneracy in that there is only one eigenfunction at the EP. At λ±

EP this
single and unique eigenfunction (up to a possible common factor) turns out now to be

∣∣ψ±
EP

〉 = ±i

√
cot φ1

cot φ2
|1〉 + |2〉. (16)

We note that, in contrast to the symmetric case, the left-hand eigenfunction at the EP (or the
eigenfunction of the adjoint problem) is now different and reads

〈
ψ±

EP

∣∣ = ±i

√
tan φ1

tan φ2
〈1| + 〈2|. (17)

As a result, the relation〈
ψ+

EP

∣∣ψ+
EP

〉 = 〈
ψ−

EP

∣∣ψ−
EP

〉 = 0 (18)

still prevails just as in the symmetric case. The basis vectors |j 〉, j = 1, 2 refer to the
eigenstates of h0.

We only mention the special case where either φ1 or φ2 assumes the value 0 or π/2: in
contrast to the Hermitian case the confluence of the two EPs does not invoke a true degeneracy
with two independent eigenvectors even though it gives rise—for real parameters—to a real
level crossing; also equation (18) is upheld at such points.

To summarize, for real matrix elements and different signs of the angles, the spectrum is
complex between the two real EPs. Regarding the wavefunction the quotient of the amplitudes
of the two coalescing wavefunctions deviates from that of the Hermitian case. The genuinely
complex superposition of the eigenfunction at the EP remains, however. For real angles φj (of
equal sign), the fixed phase difference of ±π/2 between the basis states at λ±

EP occurs just as
in the symmetric case, but the ratio of the modulus of the amplitudes is in general not equal to
unity. In addition, as the angles may be complex, not only the ratio of the modulus but also the
1 In figure 1 of [23] the spectra Ek(N) exhibit manifestations of real EPs in the variable N.
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phase difference can be different from the Hermitian case. The important point is, however,
that equation (16) describes, up to a common factor, the only possible eigenmode at the EP.

The reduction locally of an N-dimensional problem to the appropriate effective two-
dimensional problem around an EP is, mutatis mutandis, achieved along the same lines as for
Hermitian operators [16]. Owing to their vanishing norm the two coalescing eigenfunctions
dominate the complete set of all N normalized eigenfunctions in the immediate vicinity of an
EP. The expansion of the N-dimensional vector∣∣ψ±

EP

〉 =
∑

β±
k (λ)|χk(λ)〉 (19)

in terms of the complete bi-orthogonal set∑
|χk(λ)〉〈χk(λ)| = 1 λ �= λEP

with β±
k (λ) = 〈

χk(λ)
∣∣ψ±

EP

〉
, contains virtually only two terms for λ → λEP. In fact, we may

write

lim
λ→λEP




β±
1
...

β±
N


 =




0
...

±i
√

cot φ1

cot φ2

1

0
...




(20)

up to a common factor; the two non-zero positions are given by the values k, k + 1 for which
|χk(λ)〉 and |χk+1(λ)〉 coalesce. From equations (19), (20) the effective two dimensions for
any |ψ(λ)〉 become obvious within a small neighbourhood of λEP.

We do not discuss cases where the Jordan decompositions of h0 or h1 or both do not yield
diagonal but block matrices as this does not affect the local behaviour at an EP. This should
not be confused with the fact that in all cases an EP of the full problem H0 + λH1 (or h0 + λh1)
is characterized by a non-diagonal matrix J (see equation (14)) of its Jordan decomposition.

4. Examples

While there are various physical reasons to consider non-Hermitian operators, we here focus
on the simple mechanical model introduced in section 2. Note that the model can be easily
translated into a corresponding electronic setting using two coupled R–L–C circuits. EPs
can always be found for some complex values of the pair (ω, f ), but a complex value of
the spring constant f does not appear physical. This is in contrast to quantum mechanical
cases discussed previously [4] where dissipation is often described by an effective complex
interaction. In the classical model we therefore introduce the damping term of the coupling
denoting its strength by the real constant g. For given values of ωj and kj we determine g

such that an EP occurs at a real value of f . The associated two coalescing energies are then
complex describing a damped oscillation being sustained by the driving force.

The particular model reduces the resultant of equations (4) and (5) to a polynomial of
fifth order in f which is readily solved. The symmetry of the model implies that an EP at the
pair (ωEP, fEP) is always associated with an EP at (−ω∗

EP,−fEP); we focus our attention on
positive f , i.e. a repulsive spring, and the physical requirement Im ωEP < 0 implying proper
damping. Obviously, EPs can occur only if either ω1 �= ω2 or k1 �= k2 or both as otherwise a
genuine degeneracy is found for f = g = 0.
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0.1512

0.1508
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0.00075 0.00076
g

10.0484

10.0488

10.0492

Re

Figure 2. Real and imaginary parts of two repelling levels as a function of the coupling damping
g. The parameters are ω1 = ω2 = 10, k1 = 0.2, k2 = 0.1. The spring constant f = 1.005 is
chosen such that an EP occurs at g = 0.000 75 close to the real axis. The units are arbitrary. The
inset illustrates schematically a typical level repulsion for a symmetric matrix.

To get a good understanding for the EPs we first turn our attention to the behaviour of the
eigenvalues of iM in equation (2) as functions of f and g; the eigenvalues are the solutions
of equation (4). In figure 2 the real and imaginary parts of two levels coalescing at an EP very
close to the real g-axis are plotted versus g using for f a real fixed value chosen such that an
EP occurs in the vicinity of g = 0.000 75.

The level repulsion of the real parts and the expected crossing [4] of the imaginary
parts are distinctly different in shape from the usual appearance for Hermitian matrices. The
cusp originates from the plain square root behaviour of the singularity, i.e. the difference
between the two levels is controlled by ∼√

λ − λEP (in figure 2 λ ≡ g); this is in contrast
to the two complex conjugate EPs occurring in the Hermitian case where this difference is
controlled by ∼√

(λ − λEP)(λ − λ∗
EP) =

√
(λ − Re λEP)2 + (Im λEP)2 and hence produces a

smooth approach. For illustration a typical shape of the latter is drawn schematically in
the inset. The deviation from a Hermitian case is even more dramatic when the two levels
are plotted against f for a fixed g = 0.000 75 as illustrated in figure 3. Yet, the pattern is
understood by the same mechanism being a square root branch cut running along the real
f -axis and having a branch point at f ≈ 1.

As we deal with a classical system we now turn to the behaviour of the complex amplitudes
q1(ω) and q2(ω) of equation (3). The overall oscillatory time behaviour is of no interest,
we rather concentrate on the modulus and the phase difference. In general these complex
amplitudes depend on the amplitudes cj of the driving force by equation (3). However,
as discussed in the previous section, at the EP there is only one mode possible given by
equation (16) up to a global constant factor. In other words, at the EP the ratio of the
amplitudes of the two coalescing modes is given by i

√
cot φ1/ cot φ2 which is a function of

only M0 and M1 and is independent of a driving force, i.e. of the cj . At close distance to ωEP

the correct value for the ratio must therefore approximately be attained.
This is well demonstrated in figure 4 where the moduli and phases are plotted against the

driving frequency for the same parameters as in the previous figures giving rise to an EP at
ωEP = 10.05 − 0.15i. The top drawings are the moduli of the amplitudes with the left one
referring to c1 = i, c2 = 1 and the right one to c1 = −i, c2 = 1; below are the respective
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Figure 3. Real and imaginary parts of two repelling levels as a function of the spring constant f

for fixed value g = 0.000 75. The parameters are the same as in figure 2.
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0.5
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Figure 4. Top: modulus of the amplitudes q1(ω) (solid line) and q2(ω) (dotted line) for different
driving amplitudes (see text); |q1(ω)| agrees perfectly with |q2(ω)| on the top left. Bottom:
the respective phases indicated in degrees. The dashed line is the phase difference between
the amplitudes, for convenience the negative value is plotted. The parameters are the same as
in figure 2.

phases. The former choice (left column in figure 4) is driving the two masses with equal
strength but with a leading phase of π/2 for the first mass. From the drawing we see that
q1(ω)/q2(ω) ≈ +i through the whole resonance. This value is almost equal to the exact value
being q1(ωEP)/q2(ωEP) = 0.0049 + i1.000 . . . (see (21) below). If, however, the ‘incorrect’
input is enforced like the lagging phase (right column), there is more variation in the response.
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Yet, at the resonance the phase difference still is +π/2, i.e. opposite to the driving force and in
line with the mode at the EP, even though the ratio of the moduli is quite different from unity.
If the driving force is getting closer to ωEP, i.e. if a slightly damped excitation is used, the ratio
does approach the exact value irrespective of the values cj . In fact, after some slightly tedious
but straightforward algebra the result

q1(ωEP)

q2(ωEP)
= p1(ωEP)

p2(ωEP)
= fEP + ω2

2 − 2i(g + k2)ωEP − ω2
EP

fEP − 2igωEP

= fEP − 2igωEP

fEP + ω2
1 − 2i(g + k1)ωEP − ω2

EP

(21)

is obtained yielding the numerical value indicated above for the parameters considered. While
this result is obtainable analytically for the particular case of equation (6), in general one has
to resort to the two-dimensional reduction by numerical means and then use equations (9),
(10) and (16) to find the amplitude ratio.

5. Summary

The physical relevance of EPs and their observability has been discussed in the introduction.
The general study of the EPs has produced new general insights: (i) the parameters for which
a real spectrum switches to complex values are clearly related to the occurrence of EPs on the
real axis. The instability point of the RPA in quantum mechanical many-body problems is just
one case in point; (ii) in addition, the specific shape of level repulsion can be quite different
from the one encountered for Hermitian matrices H0 and H1: instead of a smooth approach
the levels approach each other in the form of a cusp. On the other hand, the topological
structure, i.e. the Riemann sheet structure of the energy surfaces is independent of whether
H0 and/or H1 are Hermitian or not; (iii) the eigenfunctions at the EP have a structure similar
to the symmetric case except for the value of the ratio of the two relevant states. This changes
from ±i for real symmetric H0 and H1 to ±i

√
cot φ1/ cot φ2 for the non-Hermitian case. In

principle, this ratio may assume any complex value. Note also that this ratio is different for
the left-hand eigenfunction at the EP.

The universal significance of the EPs is once more underlined by a simple prototype
example from classical physics. While the general features of EPs for non-Hermitian H0

and H1 have been presented in section 3, we believe that the particular results of section 4
can be experimentally confirmed, results whose analogues have so far been implemented in
sophisticated microwave cavities [17, 18], optical systems [11] and atomic spectra [9].
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